China wholesaler Custom Plastic Nylon Spur Gear Transmission Gear POM Plastic Nylon Gear for Machinery/Auto with Great quality

Product Description

         Custom Plastic Nylon Spur Gear Transmission Gear CHINAMFG POM Plastic Nylon Gear

Our service

We provide comprehensive turn-key solution based on our indutry clients needs
which including:product design,prototyping,mold making,mass production,assembly,
packing and shipping service.

Product Name Plastic Injection Molding
Material PP/PE/PS/ABS/PA/PA with GF/POM
Color Customize
Standard ISO9001:2015
Mold material P20/718/738/NAK80/S136
Mould base LKM Mould Base
option ODM plastic injection molding
Plastic Materials: PS, ABS, PP, PVC, PBT, PC, POM, PA66, PA6, PBT+GF, PC/ABS, PEEK, HDPE, TPU, PET, PPO,…etc.
Standard: ISO9001:2015
Other materials: Rubber, Silicone rubber, LSR, Aluminum, Zinc, Copper…Metal…etc.
Quality: RoSH and SGS standard
Feature: Non-marking and Non-flash
Size: According to your 2D, 3D Drawing
Color, Quantity,Unit price, Tooling cost, and Tooling size: To be discussed
Package: Standard exported Wooden box packed, Fumigation process(upon required)
Mold Building Lead Time: T1, 4-5 weeks, Part measurement report (upon required).
Export Country: Europe, Japan, America, Australia, UK, Canada, France, Germany, Italy…etc.:
Experience: 13 years of experience in plastic injection mold making and plastic product produce.
To be discussed In-Mold Decoration, Injection Mould, Plastic Mold, Overmould, 2K Mould, Die-Casting Mould, Thermoset Mold, Stack Mold, Interchangeable Mold, Collapsible Core Mold, Die Sets, Compression Mold, Cold Runner System LSR Mold,…etc.
Mould Base: Hasco Standard, European Standard, World Standard
Mould Base Material: LKM, FUTA, HASCO, DME,…etc. Or as per Customer’s Requirement.
Surface Finish: Texture(MT standard), High gloss polishing
Cavity/Core Steel: P20, 2311, H13, 2344, Starvax 420, 236, AdC3, S136, 2312, 2379, 2316, 2083, Nak80, 2767 …etc.
Hot/ Cold Runner HUSKY, INCOE, YDDO, HASCO, DME, MoldMaster, Masterflow, Mastip, ZheJiang -made brands…etc.
Mold Life: 5,000 to 1,000,000 Shots. (According to your working environment.)
Design & Program Software: CAD, CAM, CAE, Pro-E, UG, CHINAMFG works, Moldflow, CATIA….etc.
Equipment: High-speed CNC, Standard CNC, EDM, Wire Cutting, WEDM, Grinder, Plastic Injection Molding Machine for trial out mold from 50-3000T available.
Product Type Plastic Injection
Our Services CNC Machining, Plastic Injection, Stamping,Die Casting, Silicone And Rubber, Aluminum Extrusion, Mould Making,etc
Material Aluminum,Brass, Stainless Steel, Copper,Plastic, Wood,Silicone, Rubber,, Or as per the customers’ requirements
Surface Treatment Anodizing, Sandblasting,Painting, Powder coating, Plating,Silk Printing, Brushing,Polishing, Laser Engraving
Drawing Format .jpg/.pdf/.dxf/.dwg/.igs./.stp/x_t. etc
Service Project To provide production design, production, and technical service, mold development and processing, etc
Testing Machine Digital Height Gauge, caliper, Coordinate measuring machine, projection machine, roughness tester, hardness tester and so on
Packing Foam, Cartons, Wooden boxes, or as per the customer’s requirements
Payment Terms T/T, Western Union,Paypal

         Quality assurance

         We have digital altimeters, calipers, coordinate measuring machines, projectors, roughness
         testers, hardness testers, etc. to escort your quality.

         We provide you with consumable parts for free.

Mold product details

Mould Type China Top Tool Maker MIM injection Multi-Cavity Moulding Mold
Design Software UG, ProE, Auto CAD, Solidworks, etc.
Mould Material 718H, P20, NAK80, S316H, SKD61, etc.
The hardness of the steel 20~60 HRC
Mould Base HASCO, DME, LKM, etc.
Runner Hot runner, Cold runner, as per customers requirement and part structure.
Mould Cavity Single-cavity or Multi-cavit, as per customers requirement and part structure.
Ejection Techniques Pin ejection, sleeve ejection, bar ejection, blade ejection, etc.
Gate Type Edge gate, sub-gate, pin gate, side gate, etc.
Mould hot treatment Quencher, Nitridation, Tempering, etc.
Mould Cooling System Water cooling or Beryllium bronze cooling, etc.
Mould Surface EDM, texture, high gloss polishing
Mould Life >500,000 shots
Equipment High-speed CNC, standard CNC, EDM, Wire cutting, Grinder, Lathe, Milling machine, plastic injection machine
The raw material of  metal injection 316L,17-4ph,420,440c,al203,zr02,si02,fe,ndfeb,smco5,fe-si,wc-co,fe-2ni,fe-8ni,ti,ti-6al-4v, etc.
Lead time 25~60 days

           1. Q: Why choose Jufeng product?
           A: We CHINAMFG have our own plant– HangZhou CHINAMFG machinery Co., Ltd, therefore,
           we can surely promise the quality of every product and provide you comparable price.

           2. Q: Do you provide OEM Service?
           A: Yes, we provide OEM Service.

           3. Q: Do you provide customized plastic products?
           A: Yes. Customers give us drawings and specifications, and we will manufacture accordingly.

          4. Q: What is your payment term?
          A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

 
If there’s anything we can help, please feel free to contact with us.

Shipping Cost:

Estimated freight per unit.



To be negotiated
Material: PP
Application: Medical, Household, Electronics, Automotive, Agricultural
Certification: RoHS, ISO
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

plastic part
Customization:
Available

|

Customized Request

spur gear

How do you retrofit an existing mechanical system with spur gears?

Retrofitting an existing mechanical system with spur gears involves modifying or replacing certain components to incorporate spur gears into the system. Here’s a detailed explanation:

1. Evaluate the Existing System:

Begin by thoroughly evaluating the existing mechanical system to determine its design, function, and limitations. Identify the specific components that need to be retrofitted with spur gears and understand how the system operates.

2. Design Considerations:

Based on the evaluation, consider the design considerations for integrating spur gears into the system. This includes factors such as gear size, tooth profile, gear material, gear ratio, and torque requirements. Determine the specific gear specifications that are compatible with the existing system.

3. Gear Selection:

Select the appropriate spur gears that meet the required specifications. Consider factors such as gear quality, load capacity, noise level, efficiency, and compatibility with the existing system components. Choose gears from reputable manufacturers or consult with a gear specialist for guidance.

4. Gear Positioning and Alignment:

Determine the optimal positioning and alignment of the spur gears within the existing system. This involves identifying the gear locations, shaft connections, and ensuring proper alignment with other components such as bearings and couplings. Accurate positioning and alignment are crucial for efficient gear operation and longevity.

5. Modification or Replacement:

Based on the design considerations and gear selection, proceed with the necessary modifications or replacements. This may involve removing existing components, such as gears with different tooth profiles, and replacing them with the selected spur gears. Ensure proper installation and secure attachment of the new gears.

6. Lubrication and Maintenance:

Implement appropriate lubrication practices for the newly retrofitted spur gears. Consult gear manufacturers’ recommendations for lubricant type, quantity, and maintenance intervals. Proper lubrication ensures smooth gear operation, reduces wear, and extends gear life.

7. Testing and Validation:

After the retrofitting process, conduct thorough testing and validation of the modified system. Verify that the spur gears are functioning as intended, ensuring proper engagement, smooth operation, and adequate load handling. Address any issues or discrepancies discovered during testing.

8. Documentation and Training:

Create documentation detailing the retrofitting process, including gear specifications, installation procedures, and maintenance requirements. This documentation serves as a reference for future maintenance and helps ensure consistent gear performance. Additionally, provide training to relevant personnel on the operation, maintenance, and troubleshooting of the retrofitted system.

Retrofitting an existing mechanical system with spur gears requires careful planning, proper gear selection, precise installation, and thorough testing. By following these steps and considering the specific requirements of the system, it is possible to successfully incorporate spur gears and enhance the performance and functionality of the mechanical system.

spur gear

What is the lifespan of a typical spur gear?

The lifespan of a typical spur gear can vary significantly depending on several factors. Here’s a detailed explanation:

The lifespan of a spur gear is influenced by various factors, including:

  • Operating Conditions: The conditions under which the spur gear operates greatly impact its lifespan. Factors such as the magnitude and frequency of the applied loads, operating temperature, speed, and lubrication quality play a significant role. Gears operating under heavy loads, high speeds, or harsh environments may experience higher wear and fatigue, potentially reducing their lifespan.
  • Material Selection: The material used for constructing the spur gear affects its durability and lifespan. Spur gears are commonly made from materials such as steel, cast iron, bronze, or polymer composites. The specific material properties, including hardness, strength, and resistance to wear and corrosion, influence the gear’s ability to withstand the operating conditions and determine its lifespan.
  • Quality of Manufacturing: The quality of manufacturing processes and techniques employed during the production of the spur gear can impact its lifespan. Gears manufactured with precision, accurate tooth profiles, and proper heat treatment are more likely to have longer lifespans compared to those with manufacturing defects or poor quality control.
  • Lubrication and Maintenance: Proper lubrication is crucial for reducing friction, wear, and heat generation in spur gears. Regular maintenance practices, including lubricant replacement, gear inspections, and addressing any issues promptly, can significantly extend the lifespan of the gears. Inadequate lubrication or neglecting maintenance can lead to premature wear and failure.
  • Load and Stress Distribution: The design and configuration of the gear system affect the load and stress distribution on the spur gears. Proper gear design, including tooth profile, number of teeth, and gear arrangement, helps ensure even load distribution and minimizes localized stress concentrations. Well-designed supporting components, such as bearings and shafts, also contribute to the overall lifespan of the gear system.

It is challenging to provide a specific lifespan for a typical spur gear since it depends on the aforementioned factors and the specific application. Spur gears can have lifespans ranging from several thousand to millions of operating cycles. Industrial gear systems often undergo regular inspections and maintenance, including gear replacement when necessary, to ensure safe and reliable operation.

It’s important to note that gear lifespan can be extended through proper care, maintenance, and adherence to recommended operating parameters. Regular inspections, monitoring of gear performance, and addressing any signs of wear or damage promptly can help maximize the lifespan of spur gears.

When assessing the lifespan of spur gears for a particular application, it is advisable to consult manufacturers, industry standards, and experts with expertise in gear design and maintenance for accurate estimations and recommendations.

spur gear

How do you choose the right size spur gear for your application?

Choosing the right size spur gear for your application requires careful consideration of various factors. Here’s a detailed explanation of the steps involved in selecting the appropriate size spur gear:

  1. Determine the Required Torque: Start by determining the torque requirements of your application. Calculate or estimate the maximum torque that the gear will need to transmit. Consider factors such as the power input, speed, and load conditions to determine the required torque.
  2. Identify the Speed Requirements: Determine the desired rotational speed or RPM (revolutions per minute) for your application. This will help in selecting a gear with the appropriate pitch diameter and tooth configuration to achieve the desired speed.
  3. Consider the Load Conditions: Evaluate the expected load conditions, including the magnitude and direction of the load. Determine if the load is constant or variable, and if it involves shock loads or cyclic loading. This will impact the gear’s durability and load-carrying capacity.
  4. Calculate the Pitch Diameter: Based on the torque and speed requirements, calculate the pitch diameter of the spur gear. The pitch diameter is determined by the formula: Pitch Diameter = (2 x Torque) / (Pressure Angle x Allowable Tooth Shear Stress).
  5. Select the Module Size: Choose an appropriate module size based on the gear size and application requirements. The module size determines the tooth size and spacing. Smaller module sizes are used for fine tooth profiles and higher precision, while larger module sizes are suitable for heavier loads and higher torque applications.
  6. Determine the Number of Teeth: Based on the pitch diameter and module size, calculate the number of teeth required for the gear. Ensure that the gear has an adequate number of teeth for smooth operation, load distribution, and sufficient contact ratio.
  7. Consider Space Constraints: Evaluate the available space and mounting requirements in your application. Ensure that the selected gear size can fit within the available space and can be properly mounted on the shaft or gearbox.
  8. Choose the Material: Consider the operating conditions, such as temperature, humidity, and presence of corrosive substances, to select the appropriate material for the spur gear. Common materials include steel, cast iron, brass, and plastic. Choose a material that offers the necessary strength, wear resistance, and durability for your specific application.
  9. Consider Additional Design Features: Depending on your application requirements, you may need to consider additional design features such as profile shift, hub configuration, and surface treatments. Profile shift can optimize gear performance, while specific hub configurations and surface treatments may be necessary for proper mounting and enhanced durability.

It’s important to note that gear selection is a complex process, and it may require consultation with gear manufacturers or experts in the field. They can provide guidance based on their expertise and assist in selecting the most suitable spur gear for your specific application.

By thoroughly considering factors such as torque requirements, speed, load conditions, pitch diameter, module size, number of teeth, space constraints, material selection, and additional design features, you can choose the right size spur gear that meets the demands of your application in terms of performance, durability, and efficiency.

China wholesaler Custom Plastic Nylon Spur Gear Transmission Gear POM Plastic Nylon Gear for Machinery/Auto with Great qualityChina wholesaler Custom Plastic Nylon Spur Gear Transmission Gear POM Plastic Nylon Gear for Machinery/Auto with Great quality
editor by CX 2023-09-13

Tags:

spur gears

As one of leading spur gears manufacturers, suppliers and exporters of mechanical products, We offer spur gears and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of spur gears.

Recent Posts